Strain-Induced Alignment in Collagen Gels
نویسندگان
چکیده
Collagen is the most abundant extracellular-network-forming protein in animal biology and is important in both natural and artificial tissues, where it serves as a material of great mechanical versatility. This versatility arises from its almost unique ability to remodel under applied loads into anisotropic and inhomogeneous structures. To explore the origins of this property, we develop a set of analysis tools and a novel experimental setup that probes the mechanical response of fibrous networks in a geometry that mimics a typical deformation profile imposed by cells in vivo. We observe strong fiber alignment and densification as a function of applied strain for both uncrosslinked and crosslinked collagenous networks. This alignment is found to be irreversibly imprinted in uncrosslinked collagen networks, suggesting a simple mechanism for tissue organization at the microscale. However, crosslinked networks display similar fiber alignment and the same geometrical properties as uncrosslinked gels, but with full reversibility. Plasticity is therefore not required to align fibers. On the contrary, our data show that this effect is part of the fundamental non-linear properties of fibrous biological networks.
منابع مشابه
The Direction of Stretch-Induced Cell and Stress Fiber Orientation Depends on Collagen Matrix Stress
Cell structure depends on both matrix strain and stiffness, but their interactive effects are poorly understood. We investigated the interactive roles of matrix properties and stretching patterns on cell structure by uniaxially stretching U2OS cells expressing GFP-actin on silicone rubber sheets supporting either a surface-adsorbed coating or thick hydrogel of type-I collagen. Cells and their a...
متن کاملFlow and magnetic field induced collagen alignment.
A straightforward technique to align thin collagen gels is presented. This technique requires only collagen solution, surface-modified magnetic beads, a small magnet, and an incubator. As such, this is the only collagen alignment technique that requires no specialized equipment. The collagen gels are imaged with confocal reflectance microscopy, and degree of alignment is quantitatively assessed...
متن کاملVarying assay geometry to emulate connective tissue planes in an in vitro model of acupuncture needling.
During traditional acupuncture, fine needles are inserted subcutaneously and rotated, which causes loose fascial tissue to wind around the needle. This coupling is stronger at acupuncture points, which tend to fall above intermuscular fascial planes, than control points, which lay above skeletal muscle. These different anatomical constraints may affect the mechanical coupling. Fascia at acupunc...
متن کاملAn anisotropic biphasic theory of tissue-equivalent mechanics: the interplay among cell traction, fibrillar network deformation, fibril alignment, and cell contact guidance.
We present a general mathematical theory for the mechanical interplay in tissue-equivalents (cell-populated collagen gels): Cell traction leads to compaction of the fibrillar collagen network, which for certain conditions such as a mechanical constraint or inhomogeneous cell distribution, can result in inhomogeneous compaction and consequently fibril alignment, leading to cell contact guidance,...
متن کاملStrain stiffening in collagen I networks.
Biopolymer gels exhibit strain stiffening that is generally not seen in synthetic gels. Here, we investigate the strain-stiffening behavior in collagen I gels that demonstrate elasticity derived from a variety of sources including crosslinking through telopeptides, bundling through low-temperature gelation, and exogenous crosslinking with genipin. In all cases, it is found that these gels exhib...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PLoS ONE
دوره 4 شماره
صفحات -
تاریخ انتشار 2009